Sains Malaysiana 54(5)(2025): 1239-1251
http://doi.org/10.17576/jsm-2025-5405-04
Anticariogenic Potential of Lactiplantibacillus plantarum-Isolated Kimchi in suppression
of Streptococcus mutans’
Growth
(Potensi Antikariogenik Kimchi Pencilan Lactiplantibacillus plantarum dalam Merencat Pertumbuhan Streptococcus mutans)
MALATHI GANESON1,
ZALEHA SHAFIEI1,*, NORAZIAH MOHAMAD ZIN2,
MOHD NIZAM LANI3, ZAMIRAH ZAINAL ABIDIN1 & MAZLINA
MOHD SAID4
1Department
of Craniofacial Diagnostics and Biosciences, Faculty of Dentistry, Universiti Kebangsaan Malaysia,
Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Malaysia
2Centre of
Diagnostics and Applied Health Sciences, Faculty of Health Sciences, Universiti Kebangsaan Malaysia,
Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Malaysia
3Faculty of Fisheries and Food Science, Universiti Malaysia Terengganu, 21030 Kuala Nerus Terengganu, Terengganu,
Malaysia
4Centre for Entrepreneurship and SMEs Development (UKM-CESMED),
Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Malaysia
Received: 22 April 2024/Accepted:
25 February 2025
Abstract
Kimchi, a lactic acid-fermented vegetable
product, is widely recognised for its popularity and health benefits. It
contains antimicrobial microorganisms. This study aimed to isolate,
characterise, and test antimicrobial activity of kimchi isolates against Streptococcus mutans. Kimchi samples were mixed in MRS broth (1:10
w/v) and incubated overnight at 37 °C. Then, serially diluted 10-folds and
spread onto MRS agar to isolate lactic acid bacteria (LAB). Gram staining,
catalase, and oxidase tests were performed, followed by API 50 CHL and 16S rRNA
sequencing analysis to identify the most potent strain. Four selected strains,
K1, K2, K3, and K4 were identified and determined for their antibacterial
activity against S. mutans using agar
spot and agar well diffusion methods. Strain K2 with the diameter of the
inhibition zone (33.50 ± 5.47 mm), and strain K3 (33.50 ± 3.62 mm) are the
strains with the most potential to inhibit S.
mutans. However, the cell-free supernatant of strain K2 (9.92 ± 0.58 mm)
exhibited higher inhibitory activity than strain K3. Therefore, strain K2 was
selected as the most potential strain, identified as Lactobacillus (currently known as Lactiplantibacillus) plantarum 1 in the API web database and
confirmed by 16S rDNA gene sequencing as Lactiplantibacillus plantarum strain AMT744129 with 99.3%
similarity. Thus, Lactiplantibacillus plantarum strain K2-isolated kimchi has
a cariogenic effect and could be potential as an alternative agent in treating
dental caries.
Keywords: Antibacterial;
API 50 CHL kit; Lactiplantibacillus plantarum; Streptococcus mutans; 16S rDNA gene
sequencing
Abstrak
Kimchi, produk sayuran yang ditapai asid laktik, diiktiraf secara meluas untuk populariti dan manfaat kesihatannya. Ia mengandungi mikroorganisma antimikrob. Penyelidikan ini bertujuan untuk mengasing, menciri dan menguji aktiviti antimikrob pencilan kimchi terhadap Streptococcus mutans. Sampel kimchi dicampur dalam kaldu MRS (1:10 w/v) dan diinkubasi semalaman pada suhu 37 °C. Kemudian, dicairkan secara bersiri 10 kali ganda dan disebarkan ke atas agar MRS untuk pengasingan bakteria asid laktik (LAB). Ujian pewarnaan Gram, katalase dan oksidase telah dilakukan, diikuti API 50 CHL dan analisis penjujukan 16S rRNA untuk mengenal pasti strain yang paling berpotensi. Empat strain terpilih, K1, K2, K3 dan K4 telah dikenal pasti dan ditentukan aktiviti antibakterianya terhadap S. mutans menggunakan kaedah spot agar dan resapan telaga agar. Strain K2 dengan diameter zon perencatan (33.50 ± 5.47 mm) dan strain K3 (33.50 ± 3.62 mm) merupakan strain paling berpotensi merencat S. mutans. Namun, supernatan tanpa-sel bagi strain K2 (9.92 ± 0.58 mm) menunjukkan aktiviti perencatan yang lebih tinggi daripada strain K3. Oleh itu, strain K2 telah dipilih sebagai strain yang
paling berpotensi, dikenal pasti sebagai Lactobacillus (terkini dikenali sebagai Lactiplantibacillus) plantarum 1 dalam pangkalan data web API dan disahkan dengan penjujukan gen 16S
rDNA sebagai strain Lactiplantibacillus plantarum AMT744129 dengan 99.3% persamaan. Justeru,
strain Lactiplantibacillus plantarum K2-pencilan kimchi mempunyai kesan kariogenik dan berpotensi digunakan sebagai agen alternatif dalam merawat karies gigi.
Kata kunci: Antibakteria; API 50 CHL kit; Lactiplantibacillus plantarum; penjujukan gen 16S rDNA; Streptococcus mutans
REFERENCES
Abid,
S., Farid, A., Abid, R., Rehman, M. U., Alsanie, W.
F., Alhomrani, M., Alamri, A. S., Asdaq,
S.M.B., Hefft, D.I., Saqib, S., Muzammal,
M., Morshedy, S.A., Alruways,
M.W. & Ghazanfar, S. 2022. Identification, biochemical characterization,
and safety attributes of locally isolated Lactobacillus
fermentum from Bubalus bubalis (buffalo) milk as a probiotic. Microorganisms 10(5): 954.
Almohammadi, A.R., Abdel-Shafi, S., Tartour, E. & Enan, G. 2022. Inhibitory action of three
lactic acid bacteria cultures on some food-borne pathogens during pickling of
green olive fruits. Heliyon 8(11): e11693.
Balouiri, M., Sadiki, M. & Ibnsouda,
S.K. 2016. Methods for in vitro evaluating antimicrobial activity: A
review. Journal of Pharmaceutical
Analysis 6(2): 71-79.
BioMérieux Inc. 2011. 50 CHL Medium 1-6.
www.biomerieux.com
Brookes,
Z.L.S., Bescos, R., Belfield, L.A., Ali, K. &
Roberts, A. 2020. Current uses of chlorhexidine for management of oral disease:
A narrative review. Journal of Dentistry 103: 103497.
Choeisoongneen, T., Sivamaruthi,
B.S., Sirilun, S., Peerajan,
S., Choiset, Y., Rabesona,
H., Haertlé, O. & Chaiyasut,
C. 2019. Screening and identification of bacteriocin-like inhibitory substances
producing lactic acid bacteria from fermented products. Food Science and Technology (Campinas) 40(6): 1-12.
Gao, Z., Daliri, E.B.M., Wang, J.U.N., Liu, D., Chen, S., Ye, X.
& Ding, T. 2019. Inhibitory effect of lactic acid bacteria on foodborne
pathogens: A review. Journal of Food
Protection 82(3): 441-453.
Goa,
T., Beyene, G., Mekonnen, M. & Gorems, K. 2022.
Isolation and characterization of lactic acid bacteria from fermented milk
produced in Jimma town, southwest Ethiopia, and evaluation of their
antimicrobial activity against selected pathogenic bacteria. International Journal of Food Science 2022: 2076021.
Gökmen, G.G., Sarıyıldız,
S., Cholakov, R., Nalbantsoy,
A., Baler, B., Aslan, E., Düzel, A., Sargın, S., Göksungur, Y. & Kışla,
D. 2024. A novel Lactiplantibacillus plantarum strain: Probiotic properties
and optimization of the growth conditions by response surface methodology. World Journal of Microbiology and
Biotechnology 40: 66.
Kaewchomphunuch, T., Charoenpichitnunt,
T., Thongbaiyai, V., Ngamwongsatit,
N. & Kaeoket, K. 2022. Cell-free culture
supernatants of Lactobacillus spp.
and Pediococcus spp. inhibit growth of pathogenic Escherichia coli isolated from pigs in
Thailand. BMC Veterinary Research 18:
60.
Lee, S.J.,
Jeon, H.S., Yoo, J.Y. & Kim, J.H. 2021. Some
important metabolites produced by lactic acid bacteria originated from kimchi. Foods 10(9): 2148.
Mani-López, E.
& Arrioja-Bretón, D.L.M.A. 2022. The impacts of
antimicrobial and antifungal activity of cell-free supernatants from lactic
acid bacteria in vitro and foods. Comprehensive Reviews in Food Science and
Food Safety 21(1): 604-641.
Marco, M.L.,
Heeney, D., Binda, S., Cifelli, C.J., Cotter, P.D., Foligné,
B., Gänzle, M., Kort, R.,
Pasin, G., Pihlanto, A., Smid, E.J. & Hutkins, R. 2017. Health benefits of fermented foods: Microbiota
and beyond. Current Opinion in
Biotechnology 44: 94-102.
Meurman, J.H. & Stamatova,
I.V. 2018. Probiotics: Evidence of oral health implications. Folia Med (Plovdiv) 60(1): 21-29.
Mokoena, M.P. 2017. Lactic acid bacteria and
their bacteriocins: Classification, biosynthesis and applications against uropathogens: A mini-review. Molecules 22(8): 1255-1264.
Mulder, R., Maboza, E. & Ahmed, R. 2020. Streptococcus mutans growth and resultant material surface
roughness on modified glass ionomers. Frontiers
in Oral Health 1: 1-15.
Oh, D.H., Chen,
X., Daliri, E.B.M., Kim, N., Kim, J.R. & Yoo, D. 2020. Microbial etiology and prevention of dental caries: Exploiting natural products to inhibit
cariogenic biofilms. Pathogens 9(7): 569.
Park, S.Y.,
Jang, J., Lee, J., Park, H.W., Choi, H.J. & Kim, T.W. 2014. Antibacterial
activity of lactic acid bacteria isolated from kimchi. Current Topic in Lactic Acid Bacteria and Probiotics 2: 19-22.
Patra, J.K.,
Das, G., Paramithiotis, S. & Shin, H.S. 2016.
Kimchi and other widely consumed traditional fermented foods of Korea: A
review. Frontier Microbiology 7: 1493.
Petersen, J.
& McLaughlin, S. 2016. Laboratory exercises in microbiology: Discovering
the unseen world through hands-on investigation. CUNY Academic Works.
http://academicworks.cuny.edu/qb_oers/16.
Poppolo-Deus, F. & Ouanounou,
A. 2022. Chlorhexidine in dentistry: Pharmacology, uses, and adverse effects. International Dental Journal 72(3):
269-277.
Pyar, H. & Kok, P. 2019. Confirmation of the
identity of Lactobacillus species
using carbohydrate fermentation test (API 50 CHL) identification system. Journal of Applied Sciences 19: 797-802.
Qadi, W.S.M., Mediani, A., Kasim, Z.M., Misnan,
N.M., Sani, N.A. & Jamar, N.H. 2023. Biological characterization and
metabolic variations among cell-free supernatants produced by selected
plant-based lactic acid bacteria. Metabolites 13(7): 849.
Qiao, N., Wittouck, S., Mattarelli, P.,
Zheng, J., Lebeer, S., Felis, G.E. & Gänzle, M.G. 2022. After the storm-perspectives on the
taxonomy of Lactobacillaceae. JDS Communications 3(3): 222-227.
Qiu, W., Zhou,
Y., Li, Z., Huang, T., Xiao, Y., Cheng, L., Peng, X., Zhang, L. & Ren, B.
2020. Application of antibiotics/antimicrobial agents on dental caries. Biomedical Research International 2020: 5658212.2020.
Raghavendra,
G., Nitish, D., Jyothi, M. & Manish, T.K. 2023. A bibliometric framework
for quantifying research on kimchi, a staple Korean dish. Current Research
in Nutrition and Food Science 11(1): 61-76.
Shafiei, Z.,
Rahim, Z.H.A., Philip, K., Thurairajah, N. & Yaacob, H. 2020. Potential
effects of Psidium sp., Mangifera sp., Mentha sp. and its mixture (PEM) in reducing bacterial populations
in biofilms, adherence and acid production of S. sanguinis and S. mutans. Archives of Oral Biology 109: 104554.
Song, E., Ang,
L., Lee, H.W., Kim, M.S., Kim, Y.J., Jang, D. & Lee, M.S. 2023. Effects of
kimchi on human health: A scoping review of randomized controlled trials. Journal of Ethnic Foods 10: 7.
Toushik, S., Kim, K., Ashrafudoulla, M., Mizan,
M., Roy, P.K., Nahar, S., Kim, Y. & Ha, S.D. 2021. Korean kimchi-derived
lactic acid bacteria inhibit foodborne pathogenic biofilm growth on seafood and
food processing surface materials. Food
Control 129: 108276.
Tripathi, N.
& Sapra, A. 2023. Gram staining. In StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2024.
Wasfi, R., Abd
El-Rahman, O.A., Zafer, M.M. & Ashour, H.M. 2018. Probiotic Lactobacillus sp. inhibit growth,
biofilm formation and gene expression of caries-inducing Streptococcus mutans. Journal
of Cellular and Molecular Medicine 22(3): 1972-1983.
WHO. 2022. Global
Oral Health Status Report: Towards Universal Health Coverage for Oral Health by
2030. Accessed on 25 January 2024.
Widyarman, A.S., Hartono, V., Marjani, L.I., Irawan, D., Luthfi, L. & Bachtiar, B.M. 2018. Lactobacillus reuteri containing probiotic lozenges consumption reduces Streptococcus mutans, Streptococcus sobrinus, Porphyromonas gingivalis, and Aggregatibacter actinomycetemcomitans in orthodontic patients. Journal of International Dental and Medical
Research 11: 628-633.
Won, S.M.,
Chen, S., Park, K.W. & Yoon, J.H. 2020. Isolation of lactic acid bacteria
from kimchi and screening of
Lactobacillus sakei ADM14 with anti-adipogenic effect and potential probiotic properties. LWT Food Science and Technology 126:
109296.
Yi, E.J. &
Kim, A.J. 2023. Antimicrobial and antibiofilm effect of bacteriocin-producing Pediococcus inopinatus K35 isolated from kimchi against multidrug-resistant Pseudomonas aeruginosa. Antibiotics
(Basel) 12(4): 676.
Zaura, E. & Twetman,
S. 2019. Critical appraisal of oral pre- and probiotics for caries prevention
and care. Caries Research 53(5):
514-526.
Zheng, J., Wittouck, S., Salvetti, E., Franz, C.M.A.P., Harris,
H.M.B., Mattarelli, P., O’toole,
P.W., Paul, W., Pot, B., Vandamme, P., Walter, J. & Watanabe, K. 2020. A
taxonomic note on the genus Lactobacillus: Description of 23 novel genera,
emended description of the genus Lactobacillus beijerinck 1901, and union of Lactobacillaceae and Leuconostocaceae. International Journal of Systematic and Evolutionary Microbiology 70(4):
2782-2858.
Zheng, J.,
Ruan, L., Sun, M. & Gänzle, M. 2015. A genomic
view of lactobacilli and pediococci demonstrates that
phylogeny matches ecology and physiology. Applied
and Environmental Microbiology 81(20): 7233-7243.
Zotta, T.,
Parente, E. & Ricciardi, A. 2017. Aerobic metabolism in the genus
Lactobacillus: impact on stress response and potential applications in the food
industry. Journal of Applied Microbiology 122(4): 857-869.
Zou, X., Pan,
L., Xu, M., Wang, X., Wang, Q. & Han, Y. 2023. Probiotic potential of Lactobacillus sakei L-7 in regulating gut microbiota and metabolism. Microbiological Research 274: 127438.
*Corresponding
author; email: zalehashafiei@ukm.edu.my
|